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SUMMARY

Mesenchymal stem cells (MSCs) were officially named more than 25 years ago to represent a class of cells from human and mammalian
bone marrow and periosteum that could be isolated and expanded in culture while maintaining their in vitro capacity to be induced to
form a variety of mesodermal phenotypes and tissues. The in vitro capacity to form bone, cartilage, fat, etc., became an assay for identi-
fying this class of multipotent cells and around which several companies were formed in the 1990s to medically exploit the regenerative
capabilities of MSCs. Today, there are hundreds of clinics and hundreds of clinical trials using human MSCs with very few, if any, focusing
on the in vitro multipotential capacities of these cells. Unfortunately, the fact that MSCs are called “stem cells” is being used to infer
that patients will receive direct medical benefit, because they imagine that these cells will differentiate into regenerating tissue-
producing cells. Such a stem cell treatment will presumably cure the patient of their medically relevant difficulties ranging from osteoar-
thritic (bone-on-bone) knees to various neurological maladies including dementia. I now urge that we change the name of MSCs to
Medicinal Signaling Cells to more accurately reflect the fact that these cells home in on sites of injury or disease and secrete bioactive
factors that are immunomodulatory and trophic (regenerative) meaning that these cells make therapeutic drugs in situ that are medici-
nal. It is, indeed, the patient’s own site-specific and tissue-specific resident stem cells that construct the new tissue as stimulated by the
bioactive factors secreted by the exogenously supplied MSCs. STEM CELLS TRANSLATIONAL MEDICINE 2017;6:1445–1451

INTRODUCTION

Mesenchymal stem cells (MSCs) were officially named more than 25
years ago [1] to represent a class of cells from human [2] and mam-
malian bone marrow and periosteum [3] that could be isolated and
expanded in culture while maintaining their in vitro capacity to be
induced to form a variety of mesodermal phenotypes and tissues
(Fig. 1, The Mesengenic Process). The in vitro capacity to form bone,
cartilage, fat, etc., became an assay for identifying this class of multi-
potent cells [9] and around which several companies (including Osi-
ris Therapeutics, which my colleagues and I started,) were formed in
the 1990s to medically exploit the regenerative capabilities of MSCs.
Initially, the driving concept that a multipotent progenitor or “stem
cell” existed in adult marrow was not only challenged, but was
actively disregarded, especially by the orthopedic industry. Fast-
forward to today and there are hundreds of clinics [10] and
hundreds of clinical trials [11] using human MSCs (hMSCs) with very
few, if any, focusing on the in vitro multipotential capacities of these
cells.

Unfortunately, the fact that MSCs are called “stem cells” is being
used to infer that patients will receive direct medical benefit,
because they imagine that these cells will differentiate into the
regenerating tissue-producing cells (i.e., these “stem cells” will be
incorporated into and these differentiated cells will fabricate the dis-
eased or missing tissue). Such a stem cell treatment will presumably

cure the patient of their medically relevant difficulties ranging from

osteoarthritic (bone-on-bone) knees to various neurological mal-

adies, including dementia. I long ago urged, in print, that we change

the name of MSCs to Medicinal Signaling Cells [12] to more accu-

rately reflect the fact that these cells home in on sites of injury or

disease and secrete bioactive factors [13] that are immunomodula-

tory and trophic [14] (regenerative), meaning that these cells make

therapeutic drugs [15] that are medicinal. It is, indeed, the patient’s

own site-specific and tissue-specific resident stem cells that con-

struct the new tissue as stimulated by the bioactive factors secreted

by the exogenously supplied MSCs [16, 17].

HISTORY OF MSCS FROM A CAPLAN PERSPECTIVE

In the early 1970s into the 1980s, my colleagues and I published a
number of papers based on the culturing of stage 24, embryonic
chick limb bud mesodermal cells (ECLBMCs) that were observed to
differentiate into cartilage, muscle, and bone under certain culture
conditions [18–22]. These in vitro studies were correlated with a
variety of in vivo studies that focused on the cellular and molecular
events associated with the formation of embryonic limb bone [23,
24], cartilage [25], and muscle [26] in which several very prominent
dogmas-of-the-day were challenged. For example, the concept that
“cartilage is replaced by bone” led to the implication that if one
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could form cartilage in culture from embryonic mesodermal pro-
genitor cells, one could observe the transition of that new carti-
lage into bone. Moreover, the endochondral replacement of
cartilage by bone implied that the cartilage so formed in culture
would differentiate into hypertrophic cartilage, which would cal-
cify and provide the calcified matrix for subsequent bone forma-
tion. Although we documented that the ECLBMCs formed
cartilage in culture [22, 25, 26] and that hypertrophic chondro-
cytes could be identified by the production of type X collagen, the
only mineral that formed in culture was observed in the noncarti-
lage, connective tissue valleys between mounds of cartilage [23,
24]. Reducing the initial plating densities of the freshly isolated
ECLBMCs (where no cartilage formed) allowed us to observe the
differentiation of a maximum number of cells into calcified matrix-
producing osteoblasts [27].

Only when we went back to the developing chick embryo and
carefully completed rigorous histology of the mid-diaphysis of the
developing embryonic tibia, did we firmly establish that the new
bone that formed came from a progenitor cell layer (stacked cell
layer) outside and away from the already formed and expanding
cartilage core (or cartilage model as it was called [28]) [29, 30].
Importantly, the hypertrophic cartilage core was replaced by
invading vasculature and then marrow, not bone. Moreover,
others [31, 32] clearly showed that these embryonic hypertrophic

chondrocytes could be isolated, cultured, and maintained for
many weeks in vitro, documenting that hypertrophic chondro-
cytes were not “programmed” to die (i.e., their demise was due
to the nutrient and oxygen deprivation by a collar of calcified
bone that was outside and away from the cartilage core) [29].

In addition, our early pioneering studies on the synthesis of
proteoglycans of cartilage by the ECLBMC cells in culture with Vin-
cent Hascall’s [33, 34] group brought us into areas of detailing the
extracellular matrix (ECM) of first cartilage [35, 36], then muscle
[37, 38] and bone and played an important role in our current
interest in the basement membrane surrounding all blood vessels
(to be discussed below).

We spent considerable time and effort in optimizing these
stage 24 ECLBMC-cultures which, incidentally, we never called
mesenchymal or mesodermal “stem cells,” although the evidence
strongly suggested that they were multipotent. During this same
time period and especially in the early 1980s, Marshal Urist and
others were isolating molecular agents from the matrix of demine-
ralized bone [39–41]. The phenomenological basis for such efforts
stemmed from implantations of demineralized bone pieces into
muscle or subcutaneous pockets in rodents, which eventually
caused bone to de novo form from host cells [39]. Urist coined
the term “bone morphogenetic proteins (BMPs)” to summarily
refer to the bioactive agents released from demineralized bone

Figure 1. The mesengenic process. This hypothesis was originally verbalized in crude form in 1988 [4], refined as a figure in 1990 [5–7] and
1991 [1], with its current format published in 1994 [8]. All of the proposed lineage pathways to bone, cartilage, muscle, etc., have been veri-
fied by us and others using inductive cell culture conditions. There are no tissue-engineered products initiated with human MSCs that are
approved and in use medically at this time. Abbreviation: MSC, mesenchymal stem cell.
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matrix that could cause de novo bone to form in nonosseous tis-
sues, such as muscle, or subcutaneously.

Stimulated by the public lectures and publications of Urist and
because of a talented postdoctoral fellow, Glenn Syftestad, who
had worked in Dr. Urist’s lab at UCLA before coming to my lab in
1981, we joined the race to purify the BMPs. Our first approach
was to take high salt extracts of demineralized bone exactly as
published by Urist and to put them on cultures of stage 24
ECLBMCs arranged to just form bone [42, 43]. To our great sur-
prise, these extracts caused the cells to form mounds of cartilage.
We named the presumed active agents as chondrogenic stimulat-
ing activity, which we purified, and the university filed patents
[44, 45], which for reasons that could be challenged, they stopped
maintaining. In the mid-1980s and certainly by 1987, it became
known that Dr. John Wozney and his colleagues at Genetics Insti-
tute, Inc. (Cambridge, MA) had cloned BMP2 and had patented
the BMP-family of molecules [46, 47]. The race for the BMPs was
over, and my colleagues and I had failed to win, much less “place
or show.”

In one of the demineralized bone implantation systems, Dr.
Hari Reddi purified one member of this BMP-family and, impor-
tantly, characterized the in vivo temporal events caused by these
factors [48–50]. These temporal events involved the invasion of
the implant and cell division of host mesenchymal cells followed
by their differentiation into cartilage which became hypertrophic
and which was replaced by vascularized and marrowized bone
[50]. Using Dr. Reddi’s histology slides of these subcutaneous
implantation specimens, which he generously provided, I sug-
gested that the temporal sequence of cartilage replacement by
bone was identical to that which we described in the developing
embryonic chick tibia [5]—essentially, that the implanted demine-
ralized bone particles were surrounded by mesenchymal progeni-
tor cells, which were attracted to the demineralized particles and
formed cartilage. Since the implant was walled-off, encysted by a
layer of these mesenchymal cells comparable to the stack cell
layer of the embryonic chick tibia, all blood vessels were excluded.
The blood vessels outside the layer of surrounding and encysting
mesenchymal cells caused the bottom layer of encircling cells to
differentiate into a layer of osteoblasts, which fabricated a layer of
osteoid that became mineralized. The deprivation of nutrients and
oxygen caused the encased chondrocytes to form hypertrophic
cartilage (Reddi documented the production of type X collagen)
whose cells expired, releasing large quantities of vascular endo-
thelial growth factor (VEGF), which caused the external vascula-
ture to invade just as occurs in the mid-dyaphasis of the
embryonic chick tibia [5, 29, 30]. These invading vessels brought a
fresh supply of mesenchymal progenitor cells, which then formed
vascularized and marrowized bone.

Without going into details, the central fact that comes from
the above is that upon jamming the demineralized bone into mus-
cle or the subcutaneous sites, the release and clustering of mesen-
chymal progenitor cells could be documented in these adult
rodent hosts. In concert with these facts was the realization that
adult bone marrow contained the same or similar primitive osteo-
chondral progenitors [51–57]. The presence of these mesenchy-
mal progenitors could be deduced from many avenues of
exploration: (a) since the days of Aristotle, bone marrow was
known to enhance orthopedic/bone healing [51]; (b) in modern
terms, Connolly et al. [52, 53] and more recently Hernigou [58],
documented the direct osteochondral potency of bone marrow or
bone marrow aspirates; (c) Friedenstein et al., as rediscovered

and popularized by Owen, showed that clones of adherent osteo-
genic progenitor cells could be isolated and propagated in culture
from adult marrow [54–57]; and last (d) Owen herself imagined a
crude mesenchymal lineage comparable to that described for
descendants of hematopoietic stem cell (HSC) [57]. It is important
to stress that in the 1980s and early 1990s, the dogma-of-the-day
was that the only stem cells that existed in the adult body were
HSCs.

The above facts (especially the demineralized bone implanta-
tions into adult hosts) led Dr. Stephen Haynesworth and me to
see if we could isolate and purify the mesenchymal progenitor
cells from adult human bone marrow [1, 59–63]. At that time, we
were not aware of the work of Friedenstein and of Owen, which
was lucky because we had the ECLBMC system, which was quite
different from the culture conditions of Friedenstein and Owen.
We had long before optimized this ECLBMC system, in particular
by optimally choosing the batch of fetal bovine serum (FBS) used
to culture these chick embryonic cells [64]. This lucky batch of
serum was later shown to be optimal for the attachment, propa-
gation, and maintenance of the multipotency of the culture
adherent cells from human adult marrow [65, 66]. Indeed, one in
10–20 batches of FBS was shown to be optimal for marrow-
derived hMSCs by the ECLBMC culture assay system, which even-
tually was replaced by other criteria [66]. This assayed batch of
FBS allowed MSCs to optimally attach to the culture dishes, to
expand to form colonies (referred to as colony form units/fibro-
blast, CFU-f by Friedenstein [55], that could be counted to give
MSC titers, which ranged from 1 in 10,000 marrow cells in new-
borns to 1 in 2 million marrow cells in 80-year-old marrow donors
[67]. Given all of the above, I named these propagated cells that
were multipotent in culture assay: MSCs [1].

MSCS: VARIOUS NAMES MEAN THE SAME

Given the historic outline above, various names for these culture
adherent and passaged adult marrow-derived, multipotent mes-
enchymal cells came to mind:

Marrow Stromal Cells

The term “stroma” is an older morphological term meaning from
connective tissue or the structural component of tissue. As
defined by Owen in 1988 [57], these are fibroblastic cells that
adhere to plastic and expand, forming colonies (CFU-f) that are
osteogenic. One could also envision that bone marrow stroma
was a unique scaffold that supports different lineage arms of hem-
atopoiesis. Such a three-dimensional connective tissue scaffold
does not exist in marrow, although the vision of such a specialized
framework is enchanting.

Multipotent Stromal Cells

MSCs can be multipotent, as documented in various culture
circumstances.

Mesodermal Stem Cells

Because of our studies of ECLBMC cells, this term was highly
favored, especially because all of the induced or bioactive factor-
treated cells and tissue formed in culture were of mesodermal
(middle layer of the embryo) origin.
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MSCs

I chose this term because mesenchyme is a type of tissue charac-
terized by loosely associated cells that lack polarity and are sur-
rounded by a large ECM. Because of their in vitro multipotency
and clonability [68], I, provocatively, called them “stem cells” to
especially appeal to the orthopedic community. As defined by
hematologists, all stem cells must be capable of serial transplanta-
tion and unlimited doublings. Indeed, there are published reports
that support this definition [69, 70].

Mesenchymal Stromal Cell

A group of scientists at an international meeting termed the MSC
as a “stromal” cell because they did not favor the stem cell classifi-
cation and imagined, incorrectly, that the origin of MSCs, from a
variety of tissues, was the connective tissue layer of that tissue [9].

Medicinal Signaling Cell

Because the function of MSCs in vivo is secretory and primarily
functional at sites of injury, disease, or inflammation, I now favor
this terminology [12].

THE NEW SCIENCE: MSCS ARE DERIVED FROM PERICYTES

Central to the renaming strategy is the fact that most, if not all,
MSCs are derived from the differentiation of perivascular or mural
cells, pericytes [71]. The studies of Dr. Bruno P�eault and colleagues
[72] clearly document that pericytes isolated from a variety of tis-
sues give rise to MSCs, as identified by cell surface antigens and
their in vitro multipotency. Importantly, MSCs can be isolated
from every vascularized tissue [73] and even from menstrual flow
[74, 75] (i.e., broken blood vessels release the perivascular cells
that differentiate into MSCs). The perivascular location as the ori-
gin of MSCs and their functional capacity to be immunomodula-
tory and trophic (including fabricating and secreting antibiotic
proteins [76]) challenges the “stromal” name and origin of the
MSCs [9, 77, 78].

Based on the above, we have assembled the new and current
information on the pericyte MSC (pMSC) into a poster, which has
a number of interesting and unusual pieces of information not
previously appreciated [79]. These include the fact that each sepa-
rate tissue-specific stem cell is both in communication with its
underlying vascular endothelial cells and neighboring specific peri-
cyte/MSC [Universal Stem Cell Niche]. These pMSCs are specific to
each stem cell, including a chemically different pMSC next to the
active versus quiescent HSC in marrow [80, 81]. In every tissue
examined in detail, the marrow, neural tissue [82], liver [83], heart
[84], etc., tissue-specific stem cells are next to its specific pMSC on
a blood vessel. These observations further support the concept
that all pMSCs have both MSC-common and MSC-unique chemi-
cal and functional features. In the in vitro multipotency assays, the
assay must be optimized for each tissue specific MSC. For exam-
ple, hMSCs of marrow were shown to be induced in culture into
the chondrogenic lineage by TGF-b [85], while fat-derived hMSCs
require both TGF-b and BMP-6 [86]. The main in vivo functional
differences of MSCs from different tissues or organs remain largely
unknown, even though the major therapeutic functionality of
MSCs at various sites of disease or injury are very similar when
comparing these different MSCs [87].

CHANGING NAMES

Since the main functionality in vivo of MSCs [88] is not multipo-
tency and, thus, not as a stem cell [89–91], I propose that its
name be changed. The precedent for changing medical terms is
not new. For example, names of many diseases have been
changed: ablepsy was changed to blindness; ague to malarial
fever; American plague to yellow fever; anasarca to generalized
massive edema; aphonia to laryngitis; aphtha to thrush in infants;
and apoplexy to paralysis due to stroke [92]. Of course, there is
great stigma associated with the accepted names for some dis-
eases; multiple sclerosis was once called hysterical paralysis when
people believe this was caused by stress linked with oedipal fixa-
tions. Chronic fatigue syndrome is a serious ailment, yet 85% of
clinicians view it as a psychiatric disorder; activists are currently
trying to change the name to remove the bias and stigma. There
is no stigma associated with the term MSC except, for me, the
implied promise that it is a true “stem cell,” which it is not in vivo.

It has been argued, because MSC science and clinical use is so
strong and, indeed, positive with almost 700 clinical trials listed on
clinicaltrials.gov, that the MSC nomenclature should remain. The
problem is not with the “mesenchymal” part of the name; it is the
“stem cell” part of the name that is the issue. As outlined in our
poster, the pMSC functions quite differently from the released
pericyte that forms an activated, site-specific MSC. Infused auto-
or allogenic MSCs appear to home in on active vascular sites of
injury or inflammation [93]. At such disease sites, the MSC rarely
or never differentiate into the tissue at that site [13, 88], but they
secrete bioactive factors (some of the names of these factors we
know [94]) and their therapeutic effects can be analyzed as site-
specific clinical outcome parameters. Outcomes for graft-versus-
host disease, acute myocardial infarct, low back pain, osteoar-
thritic knees, tendonitis, and aspects of inflammatory bowel dis-
ease or Crohn’s disease have been reported (www.mesoblast.
com). Again, for emphasis, these MSC-effects are medicinal.

MSCS ARE NOT STEM CELLS

The science and commercialization of adult MSCs were enhanced
by the popularization of embryonic stem cells (ESCs) and made
more attractive by President Bush’s prohibition of the use and
study of ESCs [95]. This popularization of ESCs also served as a dis-
advantage because all “stem cells” have been viewed by the pub-
lic as being pluripotent or multipotent. Thus, the infusion of
hMSCs in an osteoarthritic knee is imagined to contribute directly
into the regeneration of cartilage tissue by the infused MSCs
forming functional chondrocytes that fabricate functional cartilage
tissue. The infusion into cardiac patients of hMSCs assumes that
these cells will directly convert into functional heart muscle cells
to replace the cells that die from the ischemia of the heart attack.
And so on and so on: stem cells directly convert into the diseased
or injured tissue in question. Although we, in this field, all have
our own favorite explanation for the mechanisms that govern the
observed positive therapeutic outcomes, the in vivo effects of
infused hMSCs are best described as medicinal and most likely
not associated with the infused cells differentiating into regenera-
tive or replacement tissue [96–99].

These stem cell misconceptions have led some practitioners in
the United States and worldwide to advertise the availability of
stem cell-treatments (i.e., MSCs can cure the blind, make the
lame walk, and make old tissue young again [10]). I, of course,
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want the MSC nomenclature to remain in use, but not as stem
cells. Perhaps we should call themmagic signaling cells, more stra-
tegic cells, maxi secreting cells, most sensitive cells, main secreting
cells, or message secreting cells. I propose to change the name of
MSCs to reflect our new understanding that they do not function
in the body as progenitors for tissues, neither in the normal
steady-state nor in disease or injury circumstances; they are not
stem cells.

MSCS AND METASTASIS

Last, we recently published a treatise which documents that the
pMSC actively binds to and pulls circulating melanoma cells into
the marrow of bone [100]. This grab/pull mechanism for mela-
noma metastasis is counter to the current concept that metastatic
cells secrete digestive enzymes that allow the melanoma to erode
its way into bone.We further hypothesized that the laminin iden-
tity in the basement membrane ECM of the blood vessels plays
both an active and permissive role in the extravasation of mela-
noma into bone. Thus, the melanoma must pass through the
endothelial cell layer, its basal lamina or basement membrane and
past the dense covering of mural cells. The active pMSC not only
facilitates this extravasation, but is actively and molecularly con-
trolling this translocation from the circulation into the marrow of
bone. Clearly, the pMSC is not medicinal in this context even
though its differentiated progeny, the MSC, can provide powerful
medicinal benefit given other circumstances. Last, the pMSC is not

multipotent nor does it, itself, cause tumors to form. The pMSC is
corrupted by the cancer cell; it does not corrupt normal cells to
become cancerous.

CONCLUSION

It should be permissible for the person who named the MSCs to
drop the stem cell nomenclature because it is scientifically and
therapeutically misleading. In 2010, I proposed that we call them
medicinal signaling cells [12]. That is what these do, and the cul-
ture plasticity of most mesenchymal cells (we can induce adult
human chondrocytes to make a bone or fat in cell cultures [101])
means that the stem cell moniker is inappropriate. I was wrong. I
take back the name that I gave these hugely important cells. Call
themMSCs, but please, not stem cells.
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